VISA

Correction examen blanc

Exercice1

1) on a $\overrightarrow{AB}(0,1,-1)$ et $\overrightarrow{AC}(-1,1,0)$

$$\text{Donc } \overrightarrow{AB} \land \overrightarrow{AC} = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} \vec{i} - \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \vec{j} + \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix} \vec{k} = \vec{i} + \vec{j} + \vec{k}$$

On a $\overrightarrow{AB} \land \overrightarrow{AC} \neq 0$ donc A, B, C ne sont pas alignés.

2) on a $\overrightarrow{AB} \land \overrightarrow{AC}$ est un vecteur normal au plan (ABC).

Donc l'équation de (ABC) s'écrit sous la forme x + y + z + d = 0; $d \in \mathbb{R}$

$$A(1,0,1) \in (ABC) \Rightarrow 1 + 0 + 1 + d = 0 \Rightarrow d = -2$$

D'où l'équation de (ABC) : x + y + z + 2 = 0.

3)a) on a $P \perp (ABC)$ et (AB) incluse dans P Donc \overrightarrow{AB} et $\overrightarrow{AB} \wedge \overrightarrow{AC}$ sont 2 vecteurs directeurs deP.

D'où $\vec{n} = (\overrightarrow{AB} \land \overrightarrow{AC}) \land \overrightarrow{AB}$ est un vecteur normal au plan P

$$\vec{n} = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} \vec{i} - \begin{vmatrix} 1 & 0 \\ 1 & -1 \end{vmatrix} \vec{j} + \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} \vec{k} = -2\vec{i} + \vec{j} + \vec{k}$$

Donc les coordonnées : $\vec{n}(-2,1,1)$

b) l'équation de P s'écrit sous la forme : -2x + y + z + d = 0

$$A(1,0,1) \in P \Rightarrow -2 + 0 + 1 + d = 0 \Rightarrow d = 1$$
 Donc $-2x + y + z + 1 = 0$

4)a)
$$R = d(c; p) = \frac{|1+1+1|}{\sqrt{6}} = \frac{3}{\sqrt{6}} = \frac{3\sqrt{6}}{6} = \frac{\sqrt{6}}{2}$$

b)
$$\begin{cases} x = -2t \\ y = 1+t \\ z = 1+t \end{cases} \text{ et } -2x+y+z+1 = 0 \iff 4t+1+t+1+t+1 = 0$$

$$\Leftrightarrow$$
 6t + 3 = 0 \Leftrightarrow t = $\frac{-1}{2}$

$$\Leftrightarrow$$
 $x = 1$; $y = \frac{1}{2}$; $z = \frac{1}{2}$

Donc: E(1; $\frac{1}{2}$; $\frac{1}{2}$).

Exercice2

1) on suppose que P(z) = 0 admet une solution imaginaire pure α i tel que $\alpha \in \mathbb{R}$.

$$\begin{split} P(\alpha) &= 0 \iff -\alpha^3 \mathrm{i} - (2-\mathrm{i})\alpha^2 + 2\alpha\mathrm{i} \ (1-\mathrm{i}) - 2\mathrm{i} = 0 \\ &\iff (-2\alpha^2 + 2\alpha) + (-\alpha^3 + \alpha^2 + 2\alpha - 2) = 0 \\ &\iff \begin{cases} -2\alpha^2 + 2\alpha = 0 \\ -\alpha^3 + \alpha^2 + 2\alpha - 2 = 0 \end{cases} \iff \begin{cases} \alpha = 0 \text{ ou } \alpha = 1 \\ 0 \text{ n'estpas une solution} \end{cases} \iff \alpha = 1 \end{split}$$

Donc i est la solution

$$2)(z-i)(z^{2}+2z+2) = z^{3} + 2z^{2} + 2z - iz^{2} - 2iz - 2i$$
$$= z^{3} + (2-i)z^{2} + (2-2i)z - 2i = P(z)$$

3)*
$$P(z) = 0 \iff z = i \text{ } \partial z^2 + 2z + 2 = 0$$
 ;

$$\Delta = -4 = (2i)^2 \implies z_1 = \frac{-2 - 2i}{2} = -1 - i; z_2 = \overline{z_1} = -1 + i$$

$$S = \{i; -1 - i; -1 + i\}$$

*
$$i = \left[1; \frac{\pi}{2}\right]; -1 + i = \left[\sqrt{2}; \frac{3\pi}{4}\right]; -1 - i = \left[\sqrt{2}; \frac{-3\pi}{4}\right]$$

4) a)
$$\frac{b-a}{c-a} = \frac{-1-i+1-i}{i+1-i} = -2i$$

b)
$$\frac{b-a}{c-a} = -2i \implies \frac{b-a}{c-a} = \left[2; \frac{-\pi}{2}\right] \implies \begin{cases} |b-a| = 2|c-a| \\ (\overrightarrow{AB}; \overrightarrow{AC}) \equiv \frac{-\pi}{2}[2\pi] \end{cases} \implies \begin{cases} AB = 2AC \\ ABC \text{ est rectangle en A} \end{cases}$$

Exercice3

1) card
$$\Omega = 6^2 = 36$$
; $P = \frac{3^2 + 2^2 + 1}{36} = \frac{14}{36} = \frac{7}{18}$

2)
$$P = \frac{3^2+2^2+1}{36} = \frac{14}{36} = \frac{7}{18}$$

3) a)
$$P(X = 0) = P(00 \lor 0\overline{0}) = \frac{2^2 + 2 \times 2^1 \times 4^1}{36} = \frac{20}{36} = \frac{5}{9}$$

b)
$$X(\Omega) = \{0; 1; 2; 4\}$$
 ; $P(X = 0) = \frac{5}{9}$

$$P(X = 1) = P("11") = \frac{3^2}{36} = \frac{1}{4}$$
; $P(X = 4) = \frac{1^2}{36} = \frac{1}{36}$

Methode1:
$$P(X = 2) = 1 - (P(X = 0) + P(X = 1) + P(X = 4)) = 1 - \frac{20}{36} - \frac{10}{36} = \frac{6}{36} = \frac{1}{6}$$

Methode2:
$$P(X = 2) = P("21") = \frac{2 \times 1^{1} \times 3^{1}}{36} = \frac{6}{36} = \frac{1}{6}$$

X	0	1	2	4	
P(X = x)	5	1	1	1	1
	9	$\overline{4}$	6	36	

Exercice4

Partie1

1) f est dérivable sur son domaine de définition et surtout sur let $\forall x \in I$; $f'(x) = \frac{16}{(5-x)^2} > 0$

Donc la fonction est strictement croissante et continue sur I

$$f(I) = [f(1); f(2)] = [1; \frac{5}{3}] \subset I$$

2)
$$f(x) - x = \frac{x+3}{5-x} - x = \frac{x^2 - 4x + 3}{5-x} = \frac{(x-1)(x-3)}{5-x}$$

$$5 - x > 0$$
 et $x - 3 < 0$; $x - 1 \ge 0$

Donc
$$f(x) - x \le 0 \implies f(x) \le x$$

AKADIMIA

Partie2

1) pour n = 0 on a $U_0 = 2$ donc vraie

Soit $n \in \mathbb{N}$ on suppose que $U_n \in I$ montrons que $U_{n+1} \in I$

On a $U_n \in I$ et d'après la question 1) de la partie1 on a $f(U_n) \in I$ donc $U_{n+1} \in I$

2) * $U_{n+1}-U_n=f(U_n)-U_n$ on a $U_n\in I$ et d'après la question 2) de la partie1 on a $f(U_n)\leq U_n$ Donc la suite est décroissante.

* (U_n) est décroissante et minorée par 1 donc convergente.

3) on a $\forall n \in \mathbb{N} f(U_n) = U_{n+1} \text{ et}$:

Donc la limite de la suite est une solution de l'équation f(x) = x

$$f(x) = x \iff \frac{(x-1)(x-3)}{5-x} = 0 \iff x = 1$$

 $x = 3$

On a $3 \notin I$ $\in I$ donc $\lim_{+\infty} U_n = 1$.

Partie3

1)
$$W_{n+1} = \frac{U_{n+1}-3}{1-U_{n+1}} = \frac{\frac{U_{n}+3}{5-U_{n}}-3}{1-\frac{U_{n}+3}{5-U_{n}}} = \frac{U_{n}+3-15+3U_{n}}{5-U_{n}-U_{n}-3} = \frac{-12+4U_{n}}{2-2U_{n}} = 2\frac{-3+U_{n}}{1-U_{n}} = 2W_{n}$$

Donc (W_n) est géométrique de raison 2

$$W_0 = \frac{U_0 - 3}{1 - U_0} = 1$$
 \Rightarrow $W_n = W_0 \times q^n = 2^n$

2) *
$$W_n = \frac{U_n - 3}{1 - U_n}$$
 \iff $W_n - U_n W_n = U_n - 3$
$$\Leftrightarrow -U_n (W_n + 1) = -3 - W_n$$

$$\Leftrightarrow U_n = \frac{3 + W_n}{W_n + 1} = \frac{3 + 2^n}{2^n + 1}$$

$$\lim_{+\infty} U_n = \lim_{+\infty} \frac{2^n}{2^n} \left(\frac{\frac{3}{2^n} + 1}{1 + \frac{1}{2^n}} \right) = 1$$

Probleme

1)
$$X^2 - 4X + 3 = 0 \implies \Delta = 4 \implies X_2 = 3$$
 ; $X_1 = 1$

$$e^{2x} - 4e^x + 3 = 0 \Leftrightarrow e^x = 1$$
 le $e^x = 3 \Leftrightarrow x = 0$ le $x = 1$

$$x \in Df \iff e^{2x} - 4e^{x} + 3 > 0 \iff x \in]-\infty; 0[\cup]ln3; +\infty[$$

2)
$$\lim_{(\ln 3)^+} f(x) = \lim_{(\ln 3)^+} \ln(e^{2x} - 4e^x + 3) = \ln(0^+) = -\infty$$

Donc \mathcal{C} admet une asymptote verticale d'équation : $x = \ln 3$

$$\lim_{(0)^{-}} f(x) = \lim_{(0)^{-}} \ln(e^{2x} - 4e^{x} + 3) = \ln(0^{+}) = -\infty$$

Donc \mathcal{C} admet une asymptote verticale d'équation : x=0

3)
$$\lim_{+\infty} f(x) = \lim_{+\infty} \ln(e^{2x} - 4e^x + 3) = \lim_{+\infty} \ln\left(e^x \left(e^x - 4 + \frac{3}{e^x}\right)\right) = +\infty$$
$$\lim_{-\infty} f(x) = \lim_{-\infty} \ln(e^{2x} - 4e^x + 3) = \ln 3$$

4) a)
$$f'(x) = \frac{(e^{2x} - 4e^x + 3)'}{e^{2x} - 4e^x + 3} = \frac{2e^{2x} - 4e^x}{e^{2x} - 4e^x + 3} = \frac{2e^x(e^x - 2)}{e^{2x} - 4e^x + 3}$$

b)
$$f'(x)$$
 et $(e^x - 2)$ ont même signe

$$e^x - 2 > 0 \iff x > ln2$$

Donc f'(x) > 0 sur $]\ln 3$; $+\infty[$ et f'(x) < 0 sur $]-\infty$; 0[

c)

х	$-\infty$	0	ln2	ln	.3 +∞
f'	-				+
f	ln3 -∞				

5) *on a f est strictement décroissante et continue sur] $-\infty$; 0[

$$f(]-\infty;0[)=]-\infty;ln3[Donc 0 \in f(]-\infty;0[)$$

Alors l'équation f(x)=0 admet une solution unique α dans $]-\infty$; 0[

*On a f est strictement croissante et continue sur $\ln 3$; $+\infty$

$$f(]ln3;+\infty[)=\mathbb{R}\ \ \mathsf{Donc}\ 0\in f(]ln3;+\infty[)$$

Alors l'équation f(x) = 0 admet une solution unique β dans $]\ln 3; +\infty[$

*
$$f(-1) = 4(e^{-2} - 4e^{-1} + 3) = 4\left(\frac{1}{e^2} - \frac{4}{e} + 3\right)$$

$$\frac{1}{e^2} - \frac{4}{e} + 3 - 1 = \frac{1}{e^2} - \frac{4}{e} + 2 = \frac{1 - 4e + 2e^2}{e^2} = \frac{1 + e(2e - 4)}{e^2} \quad ; 2e - 4 > 0$$

$$\frac{1}{e^2} - \frac{4}{e} + 3 > 0 \implies f(-1) > 0$$

Donc $f(-1) > f(\alpha)$ et on a f est decroissante sur $]-\infty$; 0 donc $-1 < \alpha < 0$

*
$$f(2) = \ln(e^4 - 4e^2 + 3) = \ln(e^2(e^2 - 4) + 3); e^2 - 4 > 0 \implies f(2) > 0$$

Donc $f(2) > f(\beta)$ et on a f est croissante sur]ln3; $+\infty$ [donc ln3 $< \beta < 2$

6) a)
$$\lim_{+\infty} f(x) - 2x = \lim_{+\infty} \ln\left(e^{2x}\left(1 - \frac{4}{e^2} + \frac{3}{e^{2x}}\right)\right) - 2x = \lim_{+\infty} \ln\left(1 - \frac{4}{e^2} + \frac{4}{e^{2x}}\right) = 0$$

Donc (Δ) est une asymptote oblique de $\mathcal C$ au voisinage de $+\infty$

b) on a $\lim_{-\infty} f(x) = ln3$ donc ${\mathcal C}\,$ admet une asymptote horizontale

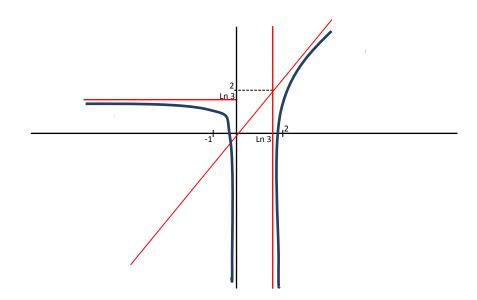
D'équation $y = \ln 3$ au voisinage de $-\infty$

7) a)
$$f(x) = 2x \Leftrightarrow \ln(e^{2x} - 4e^x + 3) = \ln e^{2x} \Leftrightarrow -4e^x + 3 = 0$$

 $\Leftrightarrow e^x = \frac{3}{4} \Leftrightarrow x = \ln \frac{3}{4}$

x	-∞ ln	<u>3</u> 4	0	ln	3 +∞
f(x)-2x	+	ф –			-
Position relative	$\mathcal{C}f$ au-dessus de (Δ)	$\mathcal{C}f$ au- dessous de (Δ)			$\mathcal{C}f$ au-dessous (Δ)

b)



8) a) g continue et strictement decroissante sur] $-\infty$; 0[donc g admet une fonction réciproque g $^{-1}$ Définie sur l'intervalle J tel que

$$J = g(I) =] - \infty; 0[$$

b) on a
$$g(\alpha) = 0$$
 et $\alpha \in]-\infty$; $0[$

Donc
$$g^{-1}(0) = \alpha$$

On a $g'(\alpha) \neq 0$ donc g^{-1} est dérivable en 0 et $(g^{-1})'(0) = \frac{1}{g'(\alpha)}$